R/vismodel.R
vismodel.Rd
Calculates quantum catches at each photoreceptor. Both raw and relative values can be returned, for use in a suite of colorspace and non-colorspace models.
vismodel(rspecdata, visual = c("avg.uv", "avg.v", "bluetit", "ctenophorus", "star", "pfowl", "apis", "canis", "cie2", "cie10", "musca", "segment", "habronattus", "rhinecanthus"), achromatic = c("none", "bt.dc", "ch.dc", "st.dc", "md.r1", "ra.dc", "cf.r", "ml", "l", "all"), illum = c("ideal", "bluesky", "D65", "forestshade"), trans = c("ideal", "bluetit", "blackbird"), qcatch = c("Qi", "fi", "Ei"), bkg = c("ideal", "green"), vonkries = FALSE, scale = 1, relative = TRUE)
rspecdata |
(required) a data frame, possibly an object of class |
---|---|
visual |
the visual system to be used. Options are:
|
achromatic |
the sensitivity data to be used to calculate luminance (achromatic) receptor stimulation. Either a vector containing the sensitivity for a single receptor, or one of the options:
|
illum |
either a vector containing the illuminant, or one of the options:
|
trans |
either a vector containing the ocular or environmental transmission spectra, or one of the options:
|
qcatch |
Which quantal catch metric to return. Options are:
|
bkg |
background spectrum. Note that this will have no effect when
|
vonkries |
logical. Should the von Kries color correction transformation be applied? (defaults to |
scale |
a value by which the illuminant will be multiplied. Useful for when the illuminant is a relative value (i.e. transformed to a maximum of 1 or to a percentage), and does not correspond to quantum flux units ($umol*s^-1*m^-2$). Useful values are, for example, 500 (for dim light) and 10000 (for bright illumination). Note that if |
relative |
should relative quantum catches be returned (i.e. is it a color space model? Defaults to |
An object of class vismodel
containing the photon catches for each of the photoreceptors considered. Information on the parameters used in the calculation are also stored and can be called using the summary.vismodel
function.
Vorobyev, M., Osorio, D., Bennett, A., Marshall, N., & Cuthill, I. (1998). Tetrachromacy, oil droplets and bird plumage colours. Journal Of Comparative Physiology A-Neuroethology Sensory Neural And Behavioral Physiology, 183(5), 621-633.
Hart, N. S., Partridge, J. C., Cuthill, I. C., Bennett, A. T. D. (2000). Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: the blue tit (Parus caeruleus L.) and the blackbird (Turdus merula L.). Journal of Comparative Physiology A, 186, 375-387.
Hart, N. S. (2001). The visual ecology of avian photoreceptors. Progress In Retinal And Eye Research, 20(5), 675-703.
Barbour H. R., Archer, M. A., Hart, N. S., Thomas, N., Dunlop, S. A., Beazley, L. D, Shand, J. (2002). Retinal characteristics of the Ornate Dragon Lizard, Ctenophorus ornatus.
Stoddard, M. C., & Prum, R. O. (2008). Evolution of avian plumage color in a tetrahedral color space: A phylogenetic analysis of new world buntings. The American Naturalist, 171(6), 755-776.
Endler, J. A., & Mielke, P. (2005). Comparing entire colour patterns as birds see them. Biological Journal Of The Linnean Society, 86(4), 405-431.
Chittka L. (1992). The colour hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency. Journal of Comparative Physiology A, 170(5), 533-543.
Stockman, A., & Sharpe, L. T. (2000). Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype. Vision Research, 40, 1711-1737.
CIE (2006). Fundamental chromaticity diagram with physiological axes. Parts 1 and 2. Technical Report 170-1. Vienna: Central Bureau of the Commission Internationale de l' Eclairage.
Neitz, J., Geist, T., Jacobs, G.H. (1989) Color vision in the dog. Visual Neuroscience, 3, 119-125.